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‘J?he problem iS considered of an optimum oontrol which minimizes the squared 
error in a system with aftereffect. The approximation of this problem by an 
analogou8 problem for Eystems described by ordinary differential equations, 
Is studied. The convergence of the approximate solution Is proved, 

1, Let us consider a control system described by Rquatlon 

dx 
-.“=Az(t)+Bs(t--)+bu 
dt 

(1.1) 

where x is an n-dimensional phase-coordinate vector, ~1 is a scalar con- 

trol function, y > 0 is a constant time-lag, 4, 3, b are’constant matri- 

ces. !lhe motion of system (1.1) la considered in the interval O<t\<T. 
The functional8 q [t, s(6)], defined on the vector-functions 

x(Q) (-r<*,<O) 

for O,< t<T and such that when 24 == 7j [t, x (t -+- @)I Equation (1.1) 

has the solution 5 (6 to, 2 (e), q) (to < t < T) for any initial conditions 

t,, and x (t, $- 6) = 2 (e), where, Z(e) is a piecewise-continuous function 

(- 7 < 6 ,< 0), are called admissible controla. 7!h? performance index of 

(1.1) Is evaluated by the functional 
J It,, z (6), ul = 

&“[1, ( x t, t,, z (6), u)l -I- u2 (t)} dt + p Ix (T, t,, z C@h 41 

io 
where WC t,xl and da-1 are forms with positive terms 

&It, Xl = 5 Oij (t) XiXjcj, p [xl = 
i, j=l 

i $, Pijxixj 
The analytic design problem of a controller El] for system (1.1) can be 

formulated in the following way [2 and 31. 
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Problem 1.1. Prom among the admissible controls n to find 

such a ?l” [t, 5 (f))], for which 

whatever the initial conditions to and Z(e). 

This problem has a solution In the form of the linear SunCtiotld c2 and 

31 

9’ (4 5 (*>I = jj [a% (4 4 (0) + i Bj (tt @) Xi (6) de] (1.2) 
i-i --Y 

However, the oo~u~t~on of the Sunctions ctI and 6, is difficult. 
Therefore, it is advisable to approximate Problem 1.1 by an ~lOgoUS prob- 

lem Sor ordinary differential equations. 

Such an approximation was studied In 141 but without investigating the 
convergence of the approximation, Methods of solving Problem 1.1, based on 
the approximation of (1.1) by ordinary equations, were worked&out and tested 

by 1u.W. Repin and V.B. Tret’lakov. 

In the present article we describe a possible approach to justifying slmi- 
lar approximations. 

Let us consider the system of equations (*) 

d$ + my(it = myc”u ‘$ = Ay” + By(") + bu (i = 1, . . -t m) (1.3) 

where m is an Integer, y” and y(i)’ are n-dimensional vectors, R, B, b 

are the matrices from (1.1). We shall denote the vector 

y”, y(“) (t = 1, * . .( m) 

by the symbol {y},. The functions &,, ft, {?/),I, defined for 0 < t < T 
and such that when u = km [t, {y(t)},] the system (1.3) has the SOlUtlOn 

{y (t, to, (z),, g,)), for any inMa conditions ts and (y (ts)), = (g),, 
are called admlsslble controls (for (1.3)). We denote 

= i {o [t, y* (t, to, (z),,,, u)l + u* (0, dt + P [Y’ (Tt tot W,, 4 
to 

“) System (1.3) is obtained Srom (1.1) by replacing the term p(t+v)-x(t) 
which In system (1.1) 

dx 
dt = Ax (4 + & 0) + bu 

effects a shirt In the timei#gnal $U? the amount 
aperiodic terms d~ii~~d~ + m 

I 
= my{ --1), 1 

- 1, by a sequence of m 
each of wh ch effects a shiPt in the 

time signal of approximate y the amount At = urn in accordance with the 
Taylor formula 

y(i-l)(~~ E $“(t + At) = ~(i)(t)+ (&f*) / dr) Ar t- l . . 



Problem 1.2. From among the admissible controls 5, to find such 

a s."Et,(1/].1 for which 

whatever the initial conditions to and (a).. 

Problem 1.2 has a solution In the form of the linear function [l and 53 

Em0 It, &>,,,I = i [atim) (t) yio + $j &@‘) (t, J] @) ] (1.4) 
i=l j=l 

whose coefficients I+(~) and pitrn) can be computed by Integrating ordinary 

differential eqautlons [6]. 

The aim of the present paper Is to study the relation between the solu- 

tions of Problems 1.1 and 1.2 for large m . 

Let us investigate the relation between the solutions of Equations 

(1.:; and (1,3) when u (t) s 0. We shall assume that y - 1 . The symbol 

IIzII will denote the Euclidean norm of Z , I.e. 11 zl] = (zl' f . . . + zn2f". 

The initial fun&Ion Z(6) Is conveniently taken to be an element of the 

space LJ- 1, OJ with the norm 

I] z (6) 11(2)[-1.0] = [ II z (0) 1” + 5 11 z w I? dq”’ 
-1 

To the motion x,(t) of (l.l), resulting from the initial condition 

s(t,+e)= z(6), let there correspond the motion {y (t)}, of (1.3) with the 

lnltlal conditions -(i-1)/m 

?J (to) = z" = z (O), y(i) (to) = z(i) = m 
$ 

z(6) d6 (2.4) 

The sol~~tlon r(t) of Equation (1.1) satisfies the%tegral equation 

x (t) = z (0) + 1 {Ax (z) + cp It, zl Bx (z)) dz + 

where the functions 

cp it, zl = 

'p* Ito, t, *I = 
cp* Do, t, 61 = 

+ i ‘P” [to, t, 61 Bz (6) d6 (2.2j 
-1 

cp and cp* are defined by the equalities 

1 when z<t--I, cp It, zl = 0 when t - 1 < t < t 

1 atha -1 < -6 < I!d(o, t - t0 - 1) (2.3) 

0 when t - to - I<690 

The solution v'(t) of (1.3) satisfies Equation 

(2.4) 

Integrating 4uatlon (1.3) successively we get 
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t 
yw (t) = 2.c_ 

(m - 1)l s y” (z) (t - ,)*-%-*(t-~) dz + 

The equation $or 

Y0 (0 = 

where the functions 

t. 

+ ,; Y(‘) (0) [m (t - tdl*-’ e_*(t_t,) 

(m - i)! 

v"(t) follow8 from (2.1), (2.4) and (2.3), 

2 (0) + ‘s {-$/” (~1 + ‘P, it, ~1 By” (z)} dz + 
1. 

+ f ‘pm* h,, t, 01 Bz (8) d6 
-1. 

rpm and cp.* are defined by the equalities 

(2.5) 

(2.6) 

(2.7) 

Let us study the function q.. We take a small number c > 0 . Replacing 
ml by the Stirling formula, from (2.7) we get 

At first let z>t--l+e. Then ccl-c < h < 1 and, consequently, 

lim ‘pm [t, Zl = 0 when m-+ 00 (2.8) 
uniformly In z > t - 1 + 8, t < T. 

NOW let z < t - 1 - 8. Then 

‘pm LL{‘s”+ly+fT} 
0 1:s 14 

(O<h< 8) (2.9) 

Just as wa8 done previously, we verify that In (2.9) the first and third 

term8 converge to zero as m - co, uniformly In Z, t < 'C. We consider the 

quantity 

T___ v-m l+s _ ?i 6 \ - vz \* I(1 + 5) e-~lm-‘ee-~ dc = JLii ’ exp - Fa &y6;)) dg (2.10) 
?2nl_s - c ( -6 I/zLs 

Because of the well-known properties of the function exp(- $C') , from 

(2.10) It follow8 that v - 1 + n(6) as m - m , and ~(6) + 0 as 6 - 0. 

Thus, for any c z= 0 there exists N(c) such that 

Icpm[4+---11<e for m>N(e), r<t--i-e 
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uniformly in t \< T. Moreover, for all t and T the function cp, is uni- 
formly bounded. We study the functlone cp.* in en analogous way end a8 a 
result we arrive at the following conclusion. 

Lemma 2.1. The functIoni q, and rp,* are uniformly bounded and 
for any c: > 0 we oan find a number X(E) such that 

mes (I4p, k ~1 - cp 14 71 I > 4 < 8 PO < -s B t) (2.11) 

~~ (1 ‘p,* ft, 6 61 - v* Do, 6 61 I > 8) < 8 (--166\<0) (2.12) 

for a11 0 < t o < t < T, if only m > i?’ (8). 

Consequently, aa m - - the functions tpa and 9.” converge in measure 
181 to the functions cp and cp+ on the interval6 [to < z < t] and 

[--i<e,<Ol unlformlyin t. Further, aa a conseQuence of their uni- 
form boundednese the functions q. end cp.” converge uniformly In-the-mean 
to the functions cp end (p” on the same Intervala c81. 

worn Equationa (2.2) end (2.61, from the propertlea of the functlone cpI 

‘P*, VB and cp** )i It follows that the motions x(t) and v*(t), correwondlng 

to the Initial oondltlona 
!J 2 @I II%1.01 \< 1 (2.13) 

are uniformly unbounded. The difference f (t) = y” (t) - x (f), according to 
(2.2) and f2.6), satisfies Equation 

- q* ito, 4 @I} Bz (14) d6 (2.14) 
-1 

We shall conelder y(t) to be an elemTt in the epace &,C*,J’l with the 

norm 
i/ t @) II%*, T) = $1; f fQ /I2 dt] 

Ihe operator 

(2.15) 

(2.16) 

haa an inverse [9 end lo] 8-l which ia uniformly bounded in lo < T and in 

m . Prom (2.14) It follows that 

f (t) = H-1 [‘s {cp, - cp} Bx (‘t) dz -t iI {‘p,* - cP*) AZ (6) de.1 (2*17) 
t. 

and from the properties of the functlon6 qBr cp , c&*, q*, (2.11)~ (2.121, 
z (8) of (2.13) and x(tfr we conclude that 

(2.18) 
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uniformly in to < T and in the z (c)of (2.13). From (2.14) and (2.18) It 

followe that 
(2.19) 

uniformly ln to < T and ln the z(fi)of (2.13). Here 

II f (t) I/c[t., TI = ma= (II f (t) II -h+ < t < T) (2.20 

By the symbols hij [t, t,] and hi?' [t, t,l we denote the solutlona x1 (~$1 
and v:(t) of systems (1.1) and (1.3) generated when u - 0 by the Initial 

conditions 2 (6, j), where 

The symbols his) it, to] and h,8j (m) [t, &I denote the impulse responses of 

system6 (1.1) and (1.3), I.e. the motion8 of these eyateme generated at 

t - to by zero initial conditions and by the control u (t) = 6 (t - &), where 

6 IS the delta-function. We have 

Prom (2.20) we arrive at the following conclusion. 

Lemma 2.2. For any E > 0 we can find a number NE such that 

II Y0 (4 - 5 (0 Pp.. Tl < e (2.21) 

/I hi [t, to1 - hj(“‘) k to] !I”,t., T] < t: (2.22) 

for allt"<<Tand for the z (#)of (2.13), If only m > N,. 

N o t e 2.1 . The Integrals 

0 0 

s 
(p*Bz(tI)dft, 

s 
q,,,*&(6) di? 

3 -1 

In Equation8 (2.2) and (2.6) can be treated PS the mathematical expectations 
of certain random variables x [6,%] and SC,,, [6,r], generated by the function 
r(6) and haVhg a POiESOn dlstr$butlon [llJ j moreover, K = x,,, -= Uz(6) and 
the probability density pm [b,~] Is defined by the equality 

(p,,, [fl,Tl= 0 for other 6 and T ), and the density p [fi,,~) will be the 
llmitof p.88 111-m. 

The integrals t t 

s 
cpBzdr, 

s cp,By=‘dr 

1. 1. 
can be treated analogously. 

It Is therefore natural that the convergence studied ln Section 2 analo- 
gously corresponds to limit relations ln probability theory [ll]. 

3. Let us consider the relation between the optumum control8 q" and gt 

of Problems 1.1 and 1.2 . The optimum control for Problem 1.1 under the 

Mtlal condition x (&, + 6) = z(e), which can be considered as a function 
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of time, will be denoted by the symbol u” (t, to, z (@)a)). 

The analogous control for Problem 1.2 under the lnit.lal conditions {y(t,)}, 
of (2.1) is denoted by U,’ (t, t,, {z},) = U,* (t, to, z (6)). Moreover, we denote 

21 [t, 2 @)I = J [t, 2 (e), u”l 

V, [t, 2 @)I = V, it, {z>,l = J, it, 2 (Q)? &77”1 

The fuz@ionals u and u, satisfy the equation of R.Bellman Cl23 s and 
hence It follows that [l to 33 

Here the vectors {av / 8%) and {dv,}/ a?~,“} have the meaning of the vec- 
tor * from the maxImum principle of Pontriagin [133. According to (3.1) 

(3.2) 

(3.3) 

where XI and y** are the optimum motions correaonding to the initial oon- 
dltlOn8 CC (to + 6) = 2 (a) and {y (&)), of (2.1); the coordinates X1* (Z) 

and yI** (z) are differentiated with respect to the coordinates x, (t) %nd 
vi“(t) for fixed u* and 1.6.’ since as a consequence of the optimum of u* and 

~2 the variations of the functional8 u = J and u,- J, brought about by 

the variations of the controls, equal zero. The optimum motions are deter- 

mined by the Cauchy formula [ 141 
f 

x* (t) = 2 (t) + 1 h(6) 14 zl 22 (z, to, 2 (6)) dz 
tr (3.4) 

y”* (t) = go (t) + [ h(s)(m) [t, 21 l&no (z, to, 2 (6)) dz 
1. 

where &f and v*(t) are the solutions of the corresponding homogeneous 

equations. Moreover, 
ax, w 

@ ttl 
= hi [T, t1, 

aI” @I 

ayi” 
= l&i* [t, t] (3.5) 
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From (3.2) to (3.5) follow the integral ewatkm for u" and u.O 

urn“ (4 = - i bi [[ { i ojlhitm) [Z, tl Tho)j(m' [IT, 51 Urn0 (5) d< + (3.7) 
i=i t j, 1=1 !S 

t. 
n T 

+ 3: (‘I)} dz + 2 Pjlhlitm) IT* tl (1 h@)jtm) IT, 51 U” (5) dc + yg (T))] 
j, I=1 1. 

The operator a[~] corresponding to Equation (3.6) Is 
n n T T 

G [ul = u (t) + 2 bi 2 { 1 ojh [r, tl (1 &b)j [?, 51 u (5) dfJ dr + 
i=l il=l. t 1. (3.8) 

+ Pphs [TV tl[ hta,j [T, 51 u (5) d5) 
t. 

and has the inverse 0-l uniformly bounded In i$ < T, when considered to be 

In the space LJt,,,Z'l. Indeed, let G[u] = j(t). 

From (3.8).lt follows that 

T 

\ f (t) u (t) dt = i u2 (t) dt + (3.9) 
t* 

+ [ i; “2 (4[i 
1, j, I=1 

h@,r [z, tl u (t) :, ,i &a)j [f, Cl u (t) @Id% + 

+ j $, P,I i[ h(a)l iti, tl U (t) dt) (f hlsJj’;T. 51 u (5) dt) > i u2 (0 dt 
t. 1, 1. 

aa a consequence of the fact that UJ[~,JC] and p[x] have positive signs. 

Therefore, the norm 

11 f [j(‘)[t,, T) > 11 u il(2+to. T) 

whence the existence and boundedness of G-l follows [9 and lo]. An analo- 
gous conclusion Is valid for the operator G. corresponding to (3.7). From 

the properties of operators 0-l and G._', and also from the properties of 

the motions x(t) and v"(t) and of the functions hj and hj(W, noted In 

Lemma 2.2, we conclude that the following assertion Is valid. 

Theorem 3.1. The optimum controls u" (t, i!,, 2 (6)) and 

&no (4 4M WJ corresponding to the Initial conditions (2.13) and (2.1), 

are uniformly bounded. 



For any e > 0 we can find a number N, such that 

I u” (4 4H 2 VW - &no (k &I, 2 (W I < f3 (II2 (Wl(a+-I,Ol d 1) (3.10) 

for all 8s < p, if only m > A+,. 

From the convergence (2.21) of the motion g"(t) to x(t) , from (2.22), and 

from the convergence (3.10) of controls ut to u*, we conclude the following 

lemma. 

Lemma 3.1. The optimum motions ?J* (t, to,(z),) converge uniformly 

to the motions z* (t, t,, z(6)) f or all t, < T and for all initial curves 

2 (@) of (2.13) and {z}~ of (2.1). 

The equalities 

%j" I4 z (@I = #A0 (6 & 2 (W, E.tn" [t, z @)I = &Ix0 (4 6 2 (W) 

are valid by the definitions of U0 and u,,,O and of q" and &,,". 

The following assert&on is a consequence of Theorem 3.1 and Lemma 3.1 

Theorem 3.2. For any c > 0 we can find a number NC such that 

I To It, z WI - E,” It, wml I < 8 II z w ll’a)[-,, O] (3.11) 

I J k z w, $I - J, it, 01~~ ~~7 I c 8 (112 (6) ~j(a)[-~, ol)* (3.42) 

for all TV IO, T] and for the {z}, of (2.1), If only m >NNL. 

4. The theorems of Section 3 establish the specific convergence of the 
solutions of the auxiliary problem to the solutions of the original p"oblem. 

However, there still remains unanswered here the fundamental question: 

whether or not the motions of system (1.1) which are generated in the plant 

(1.1) by the control law found from the solutions of the auxiliary problem 

will be close to the optimum motions? Let us discuss this question here. 

Let the initial curve z (6) (- 1 < S\c 0) be chosen from any compact 

set of functions z(6). For definiteness we shall assume, for example, that 

the initial state Z(e) IS chosen from SmOhg pieCSWiSe*COntinUOUS functions, 

uniformly bounded thus 11 z (6)]]< 1, having not more than one point of dis- 

contlnulty. We shall assume that on the continuous segments the fUrkCtiOn 

2 (S) is equicontI.nuous. The optimum motions x(t) and y'(t) of systems 

(1.1) and (1.3), generated by these Initial states, are uniformly bounded 
and equicontlnuous. By the symbol m,(t) we denote the motion of system 

(1.3) when u - 6,Ct,{~.((t)].l~ where the vector Iw.(t)l.= ~w.(tfd7.(t-(?hn))~ 

. . ..rc.(t--3)). In other words, m,(t) Is the motion of system (1.1) which 

is obtained if to the plant (1.1) with aftereffect is applied the control 

law found Sor the auxiliary Problem 1.2 . The motions u.(t) also will be 

uniformly bounded and equicontinuous under bounded initial states from the 

above-mentioned set of functions Z(a), which we denote by [Z (6)1+). But in 
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such a case, from the estimates of Section 3 the Yollowlng assertion Is valid. 

T h e o r e m 4.1. For any number e> 0 there exists a number fls such 

that 
11 z 0, 20, z (6), q") - WI?, (t, t,, z @,), E,,,') (1 < e wtl.n 1 >f,I (4.1) 

for all t,, z (~)E[z (@I,,, and -rn > N,. 

An analogous conclusion of convergence 1s valid also for the values of 
the quantity J to be mlnlmlzed. 

N 0 t e 4.1 The bounds on the class of Initial curves 
compact set iz(e)]tkj are not essential for the validity of 

z 6) 
(4.1 \ 

from the 
since the 

uniform convergence lo&)-z(0 Is preserved, for example, also for all 
Initial conditions llz(ti)ll< 1 where z(6)E L2[-1,O) ; conversely, the unl- 
form convergence of the quantity J being minimized cannot be obtained under 
such an exten8lon of the class of initial states z(o). The proof and the 
analysis of the assertions made in this Note are outside the scope of the 
present paper. 
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