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The problem is consldered of an optimum control which minimizes the squared

error in a system with aftereffect, The approximation of this problem by an
analogous problem for systems described by ordinary differential equations,

is studied. The convergence of the approximate solution is proved.

1. Let us consider a control system described by Equation
B — Az +Bz(t—1) +bu (1.1)

where x 1is sn n-dimensional phase-coordinate vector, u 1is & scalar con-
trol function, y > O 1s a constant time~lag, 4, B, » sare-constant matri-
ces. The motion of system (1.1) 1s considered in the interval 0\<\t< T.
The functionals n [¢, z (#)], defined on the vector-functions

2@ (—1<8<O)
for 0<C¢t<T and such that when u == lf, z (¢ + O)] Equation (1.1)
nas the solution Z (4, &, 2 (8), M) (f < ¢ << T) ror any initial conditions
to and z (8, + ¥) = z (¥), where z (#) 1s a plecewise-continuous function
(— 7 <<% < 0), are called admissible controls. Th= performance index of

{1.1) is evaluated by the functional
J ty, z (B), ul =

T
=\ (0 It, 2 (t. to, 2 (@), W] -F w? (O} dL + p [z (T, to, 2 (D), W)]
ta
where w[t,»] and p[x] are forms with positive terms

"

wlt, 21 = X o (1) nizj, plzl = 2 P;;%i;

i, j=1 i, j=1

The analytic design problem of a controller [1] for system {1.1) can be
formulated in the following way [2 and 3].
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Analytic design of controls in & system with time-lag 877

Problem 1.1 . From among the admissible controls n to find
such a 11° [£, z (8)], for which

J [toy 2 (8), 0°1 <V [ty 2 (8), ml
whatever the initial conditions ¢, and z (§).

This problem has a solution in the form of the linear functional [2 and
3] n )
W1z @1 = 2 o 0 2 @) +§ B, (¢, 9) =i (9) ad)] (1.2)
i=1 -
However, the computation of the functions q, and 8, is difficult.
Therefore, it is advisable to approximate Problem 1.1 by an analogous prob-
lem for ordinary differential equatlons,

Such an approximation was studied in [4] but without investigating the
convergence of the approximation., Methods of solving Problem 1.1, based on
the approximation of (1.1) by ordinary equations, were worked' out and tested
by Iu.M. Repin and V.E. Tret'iakov,

In the present article we describe & possible approach to justifying simi-
lar approximations.

Let us consider the system of equations (*)
"y + my® = myt-» %“ =Ay° + Bym + by (i=1,...m)  (1.3)

where m 1s an integer, y° and y(i)' are n-dimensional vectors, 4, B, b
are the matrices from (1.1). We shall denote the vector

vy (i=1,...,m
by the symbol {y}_. The functions &, [t,{y},], defined for 0 <t << T
and such that when u = §_ [t, {y (#)},,] the system (1.3) has the solution
{y (t, to {8} §,)},, for any initial conditions 4 and {y (f)},, = {7},
are called admissible controls (for (1.3)). We denote

Jm [tm {z}mt u‘] =
T
S {0) [t y (t tlh {z}m’ u)] + uz (t)} dt + P [y (T to, {Z}m, u)]
1y

*) 8ystem (1.3) 1s obtained from (1.1) by replacing the term g(¢+y)=x(¢)
which in system (1.1

= Az (1) + Bq (1) + bu

effects a shift in the time Bignal ?f the amount = 1, by a sequence of n
aperiodic terms dy'¥/d: + f 41, each of which effects a shift in the
time signal of approximate y the amount At = ],/m in accordance with the
Taylor formula

W00 = ¢+ Ay = y OO+ @y /do) At - ...
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Problem 1.2, From among the admissible controls g, to find such
a gJ[t,{y}.] for which

Jm [tOv {z}m7 EmO] < J,n [tO) {Z}m, gm]
whatever the initial conditions ¢, and {z},.

Problem 1.2 has a solution in the form of the linear function [1 and 5]

B @)=Y [am @y + PNy (1.9

i=1 * j=1
whose coefficlents ai(m) and ﬁi("” can be computed by integrating ordinary
differential eqautions [6].

The aim of the present paper 1s to study the relation between the solu~
tions of Problems 1,1 and 1.2 for large m .

2. Let us investigate the relation between the solutions of Equations
(1.1) and (1.3) when u () = 0. We shall assume that y = 1 . The symbol
| z|| Will denote the Buclidean norm of 2z, i.e. |z = (22 + ...+ z.)™
The initial function 2 (1‘)\ is conveniently taken to be an element of the
space [L,[— 1, O] with the norm

a . Ys
120 [Peno = [ 12 @O + § 12 @ [} a8
-1
To the motion x(¢) of (1.1), resulting from the initial condition
z (t+0) = z(9), let there correspond the motion {y (¢)},, of (1.3) with the
initial conditions —(i-1)/m
Pl)=22=20, yo@)=200=m { z@ad (@1

i/m
The solution x(t) of Equation (1.1) satisfies the /1ntegra1 equation
t

z() =20 + { (42 () + ¢ [t, v] Bz (0} dv +

b
0
+ § * [t 1, 01 Bz (9) a0 2.2)
-1
where the functions ¢ and ¢ are defined by the equalities

(p[t,’l:]:i when T <t — 1, q)[t,T]::O whent — 1 LT ¢
o [t 5, 8] =1 when —1 <O <min (0,2 —1t0—1) (2.3)
q)* [to't"&]=0 whent—-to-—'1<ﬁ<0

The solution y°(¢) of (1.3) satisfies Equation
¢

¥ () = 5° 0 + § (45° (1) + Bym (1)) de (2.4)

te
Integrating Equation (1.3) successively we get
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t
¥ 0= G| ¥ ¢ = e dr

+ 2 ¥ (0) w)_]'_e—m(t-t.) (2.5)
=1 :
The equation for y°(¢) follows from (2.1), (2.4) and (2.5),
t

¥ O =200 +§ (49" (0 + o, [t, 71 By (1)) dv +
ty

0 .
+§ 0% [t 1, 1 Bz (8) do (2.6)
_1.

where the functlons ¢, and o* are defined by the equalities

t
m LE T} =S '”m M lg-m(t-v) gr
g 2.7)

t-t,

Q" [ty t, 81 — m S &rm dt
0

(m—i)l

Let us study the function ¢,. We take a small number ¢ > O , Replacing
m! by the Stirling formula, from (2.7) we get

t-1

- Vz § [Ger-%]™ tea-t4o gt (I 0|<I—2%)

and, consequeritly,

At first let T >t —1 4 e Then fetv<CA<1
(2.8)

limg_ [, t] =0 whenm— oo
uniformly in v >t —1 4+ &, t  T.

Now let Tt — 1 — & Then
1-8 1+3 [

9, = 11;?&{ § _|_1—Ss + 1§s} O<8< ¢) (2.9)

Just as was done previously, we verify that in (2.9) the first and third
terms converge to zero as m — oo, unlformly in T, t< T. We consider the

quantity
+8 5
Y _ Ve - _Vm g (m — 1)
VR S e S [(1--7) e-X]™1e0-C df — ﬁiexp(— T%‘W) dz (2.10)

Because of the well-known properties of the function exp(— ${2) , from

(2.10) it follows that v~ 1 + x(8) a8 m = , and x(8) - O as 6 — O.

Thus, for any ¢ > O there exists ¥(¢) such that
lo, [t Tl —1]<e for m>N(e), 1<t —1—¢
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uniformly in £ < T. Moreover, for all ¢ and 1t the function g, is uni~
formly bounded. We study the functions Q," in an analogous way and &as a
result we arrive at the following conclusion.

Lemma 2,1 . The functions ¢, and g are uniformly bounded and
for any ¢ > 0 we can find a number #(c) such that

mes (g, [t,tl—@lt, 7] >e)<<e (g<r<y (2.11)
mes ({@,* [£, £, 8] —¢* [4, £, 8] | > ) <&  (—1g<o<0) (2.12)
for all 0L, <t T, 1t only m > N (e).

Consequently, as m - « the functions g, and cp:" converge in measure
(8] to the functions ¢ and o" on the intervals [f, < v<{¢] and
[—1 <8< 0] uniformly in ¢ . PFurther, as a consequence of their uni-
form boundedness the functions g, and o.* converge uniformly in-the-mean
to the functions ¢ and ¢ on the same intervals [8].

From Equations (2.2) and (2.6), from the properties of the functions g,
o*, 9, and @, it follows that the motions x(¢) and p°(¢), corresponding
to the initial condlitions

I2(®) [P0 <1 (2.13)
are uniformly unbounded. The difference f (f) = y° (f) — z (f), according to
{2.2) and (2.6), satisfies Equation

¢ 1
fo=\4+e, 0B @dr+ (g, [t —0lt Bz (Wdv+

e ly

0
+§ 0% [t t, 81 — 9% [, 1, 01} Bz (0) d® (2.14)
~1
We shall consider s(t) to be an elemex’;t in the space [r,[?,,7] with the
1 @19, n = (17 OF 4] (2.15)
fs
The operator :
Hifl =7 — {4 + 9B () dv (2.16)
ty

has an ilnverse [9 and 10] 7~ which 18 uniformly bounded in {p < T and in
m . From (2.1%) 1t follows that
t 0
@ = H* [\ @, — o} Bz (1) dv -+ { (o,* — %) Bz (®) do] (247
f 1
and from the properties of the functions g,. o » @ » 9% (2.11), (2.12),
z (®) of (2.13) and x(¢), we conclude that

lim H f (t) Hiz)[t., Ty == 0 when 1l — oC (2.18)
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uniformly in f <X 7 and in the z (8) of (2.13). Prom (2.14) and (2.18) it
follows that

lim | f () ffy 7y = O whom m— oo (2.19)
uniformly in lp <X I and in the z (§) of (2.13). Here
IF () e, 71 = max ([ f () || whenty <t T) (2.20

By the symbols hy; [t, t,] and h{}” [¢, t,] we denote the solutions wx,(¢)
and y,"(¢) of systems (1.1) and (1.3) generated when y = O by the initial
conditions z (¥, j), where

z(0,/) =1, 20, =0, 2@, ) =0 *+/,—-1<30

The symbols R (¢, £,] and hfé’;’ [t, t,] denote the impulse responses of
systems (1.1) and (1.3), i.e. the motions of these systems generated at
t = t, by zero initial conditions and by the control u ) = 6 (¢t — ty), where
0 1s the delta-function. We have

n

By = 2 hijbj(to), kg === 2 Ri;mbi(to)
J=1

=1
From (2.20) we arrive at the following conclusion.

Lemma 2,2, Por any ¢ > O we can find & number ¥ sSuch that
19° ) —z @O .1 < e (2.21)
LRy [ty tg] — hyit™ 12, to) oy, 7y < & (2.22)
for allt,< 7and for the z () of (2.13), 1f only m > N..

Note 2.1 . The integrals
0 0
S 9*Bz (0) 40, S @,.*Bz (8) ad
-1 -1

in Equations (2.2) and (2.6) can be treated as the mathematical expectations
of certain random variables x [®, T] and x, [®, 1], generated by the function

z (#) and having a Poisson distribution [11); moreover, x =% == Bz (§) and
the probability density p . [®, ] ie defined by the equality
m i i i — .
P [8, T = Gy (O™ e — - SO =5 <

(P [®,T] =0 for other & and r ), and the density p [®, 7] will be the
limit of p, 88 m ~ = , *

The integrals { t
{ oBaar, { omByeae
te to

can be treated analogously.

It i1s therefore natural that the convergence studied in Section 2 analo-
gously corresponds to limit relations in probability theory [11].

3. Let us consider the relation between the optumum controls 1n° and gm’
of Problems 1.1 and 1.2 . The optimum control for Problem 1.1 under the
initial condition z (¢, + ¥) = z (#), which can be considered as a function
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of time, will be denoted by the symbol u° (¢, fy, z (8)).

The analogous control for Problem 1.2 under the initial conditlons {y(t,)},,

of {2.1) is denoted by Um OfF F f28 Y= 1 Pt + 2 OV Mamemven
R £ ERTL T W £ ¥y uo, ‘Hjm} W \¥y gy & (V). mux.cuvc&, we uenuve

v [t, 2 (0] =J [t, z (), u°]
v {8, 2 (8)] = o, [, {z}m] = J, [t, 2 (9), un°]

The functionals » and v, satisfy the equation of R.Bellman [12], and
hence it follows that {1 to 3]

n a ) 1
u® (¢, by, 2 (8) = — }2_ 2 bi.zl%:(:,t)—_h@lz — Ly
. 3.1)
0 1 30, (8 1Y (M ] 1
un® (bt {2)) = — 5 2.5 G = — b,
i=1 3

Here the vectors {0v/ 0z} and {0v,)/ 8y,°} have the meaning of the vec-
tor § from the maximum principle of Pontriagin [13]. According to (3.1)

n T n oz, *
w(t by 2 (§) = — 2 b B { > waz* (1) “—:; {(:;)} dt +
=1 i b=t !
» dz* (T')
+ 2 oprr N5t |

iy I=1

3.2)

1 T n
. B ‘ o * (v)
Un® (8 tpy 2 () = — 231 bi [5 {5,‘?‘31 o5y ( ) (t)} dv +

(T)
+ 2 pﬁy ( ) auott)] (33)

i =1

where x« and y°* are the optimum motions corresonding to the initial con-
ditions z (f, -+ 9) = z (8) and {y (&)}, of (2.1); the coordinates z;* (1)
and ¥,°* (1) are differentiated with respect to the coordinates x, (¢) and
y°{t) for fixed u° and u,’® since as a consequence of the optimum of u° and
u,® the variations of the functionals v = J and uv,= J, brought about by
the variations of the controls, equal zero. The optimum motlons are deter-
mined by the Cauchy formula [14]

i
) =)+ by 1t T w0 (5, 2, 2 (9)) d
A (3.4)

4
() = 3° ) + §he™ [t (%, 4, 2 (9)) dv
1y

where x{t) and p°{z) are the solutions of the corresponding homogeneous
. eover
equations., Moreover, oy )

o

oz, {1}

m“ - hli [T» t],

hi* [T, t) (3.9)
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From (3.2) to (3.5) follow the integral equations for y° and u,°

n T m <
u’ (t) = — Z b; [S { 2 ok [, t] (S hey; [T, Tl w® (3) dC + (3.6)

i=1 t i, =1

+ z; (1:))} dv + i p; hui [T, t] (% ki [T, £l w® (C) dC + z; (T))]

i =1

[
n

n T -
um® ()) = — 2 by [S { D @phum™ [, 1] (S k™ [, T un’® (§) d +  (3.7)

i=1 £ i il=1 f

n T
+ y,.° (17))} dt + E p].,hu("') (7, t (S h(s)j(m) (T, tlw® (9] g + y;’ (T))]

=1 te

The operator @[u] corresponding to Equation (3.6) is

n n T b3
Glul=u(@®+ Db 2 {] waus v, 1 ({ hewys [z, 0w (@) d) de +
te

i=1 Jil=1-"

(3.8)

T

+ oy (7, 81 ko 1T, T (0) dt}

te

and has the inverse ¢~ uniformly bounded in {, < T, when considered to be
in the space [,[t,,7]. Indeed, let gl[u] = 7(t).

From (3.8).1t follows that

'{‘ T
3 @) u(t)de =S u? () dt + (3.9)
+§ l" o) (T)[S ke (v, tlu (2) dt] [i ke [T, Tl u (L) d@] dv +
i, hi1=1

t te

3

T

T
+ 2oy (S how (7, thu (@) dt) ({ by (7, 01w (0 d) > v ) a

i =

L t.

as a consequence of the fact that w[¢,x] and p[x] have positive signs,
Therefore, the norm

17 1@, > u @, )
whence the exlstence and boundedness of ¢~ follows [9 and 10]. An analo-
gous conclusion is valid for the operator ¢, corresponding to (3.7). From
the properties of cperators ¢! and @G,7', and also from the properties of
the motions x(¢) and y°(¢) and of the functions h; and hj™, noted in
Lemma 2.2, we conclude that the following assertion 1s valld.

Theorem 3,1. The optimum controls u° (t, fy, 2z () and

um® (¢, t, {2},), corresponding to the initial conditions (2.13) and (2.1),
are uniformly bounded.
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For any ¢ > O we can find a numbder ¥, such that

[ u® (8 2o, 2 (8)) — um® (4, f, 2 (B)) | T & (2 (@) [P0 < 1) (3.10)
for all #, < T, if only m > N,.

From the convergence (2.21) of the moticn p°(¢) to x{(¢) , from (2,22), and

from the convergence {3.10) of controls uy to u®, we conclude the following
lemma.

Lemma 3.1 . The optimum motions y°* (f, #y, {2}, ) converge uniformly
to the motions z* (f, ¢, z (3)) for all £, < T and for all initial curves
2 (8) or (2.13) and (g} or (2.1).

The equalities

n° g, z (] = u’ (¢ ¢t z (D)), BRI 2 (0)] = un’ (8, 8, 2 (9))
are valld by the definitions of u° and u,° and of 7° and E,°.

The following assertion is a consequence of Theorem 3.1 and Lemma 3.1

Theorem 3.2. Forany ¢ > 0 we can find a number §N¢ such that

17° It 2 )] — Ea® 12, (23,1 [ < & |2 (8) [Fs, (3.11)
[T 1ty 2 (9), 6] — T I8, {2}, Bl [ <& (]2 (0) [P a)®  (3.42)

for all te= [0, T] and for the (z} of (2.1), it only m > N,.

4, The theorems of Section 3 establish the specific convergence of the
solutions of the auxillary problem to the solutions of the orlginal problem.
However, there still remains unanswered here the fundamental question:
whether or not the motions of system (1.1) which are generated in the plant
(1.1) by the control law found from the solutions of the auxlliary problem
will be close to the optimum motions? Let us discuss this question here.

Let the initial curve gz (ﬁ) (.._ 1 < ﬁ< 0) be chosen from any compact
set of functions 2 (0). For definiteness we shall assume, for example, that
the initial state z ({}) is chosen from among plecewise-continuous functions,
uniformly bounded thus | z (8)[ < 1, having not more than one point of dis-
continuity. We shall assume that on the continuous segments the functlon
z (0) 1s equicontinuous. The optimum motions x(¢) and p°(¢) of systems
(1.1) and (1.3), generated by these initlal states, are uniformly bounded
and equicontinucus. By the symbol g, (t) we denote the motion of system
{1.1) when u = g,[t.{w, (t)],], where the vector {w,(t)},= {w. (¢).w, (t—(¥n)),
«eoowa (¢ =1)1. 1In other words, w,(t) 1is the motion of system (1.1) which
is obtained if to the plant (1.1) with aftereffect 1s applled the control
law found for the auxiliary Problem 1.2 . The motions y,(¢) also will be
uniformly bounded and equicontinuous under bounded initlal states from the

above-mentioned set of functions z (8), which we denote by [z (ﬁ)lm. But in
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such a case, from the estimates of Section 3 the Tollowing assertion is valid.

Theorem U4.1. For any number e> O there exists a number ¥ such

that " y
n x (tv tov z (ﬁ)a T‘o) — Wy, (ts t07 z (ﬁ)r Em ) “ < £ when [ >l~’ (41)
for all ¢, z (M) =lz (ﬁ)](k) and ‘m > N,.
An analogous conclusion of convergence is valid also for the values of
the quantity J to be minimized.

Note 4,1, The bounds on the class of initial curves zsﬂ) from the
compact set IZ(ﬁ)Lk) are not essential for the validity of (4.1) since the
uniform convergence w,,()—=z(¢!} 1is preserved, for example, also for all
initial conditions {|z(#)||<<1 where z(®)e& Li[—1,0]) ; conversely, the uni-
form convergence of the quantity . belng minimized cannot be obtained under
such an extension of the class of initial states z(9). The proof and the
analysis of the assertions made in this Note are outside the scope of the
present paper.
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